MICHIGAN STATE
 U N IVERSITY

Name:
NetID: \qquad

Algebra Qualifying Exam I

August 2019

Instructions:

- Read each problem carefully.
- Write legibly and in complete sentences.
- Cross off anything you do not wish graded.
- This exam has 8 pages with 6 questions, for a total of 65 points. Make sure that all pages are included.
- You may not use books, notes, or electronic devices.
- You may ask proctors questions to clarify problems on the exam.
- Graded work should only be written in the provided spaces (not on scratch paper) unless otherwise approved by a proctor.
- You have 120 minutes to complete this exam.

Good luck!

1. (10 points) Let G be a group of order p^{2}, where p is a prime number. Prove that G is an abelian group.
2. (15 points) Let \mathbf{F}_{5} be the finite field of order 5. The general linear group $G L_{3}\left(\mathbf{F}_{5}\right)$ consists of invertible 3×3 matrices over \mathbf{F}_{5}.
(a) Determine the order of the group $G L_{3}\left(\mathbf{F}_{5}\right)$.
(b) Prove that the unipotent subgroup

$$
U=\left\{\left.\left[\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right] \right\rvert\, a, b, c \in \mathbf{F}_{5}\right\}
$$

is a 5 -Sylow subgroup of $G L_{3}\left(\mathbf{F}_{5}\right)$.
(c) Recall that the normalizer of U is defined to be

$$
B=\left\{g \in G L_{3}\left(\mathbf{F}_{5}\right) \mid g u g^{-1} \in U \text { for all } u \in U\right\}
$$

Prove that B is the subgroup of invertible upper triangular matrices.
3. (10 points) Consider the ring

$$
\mathbb{Z}[\sqrt{-5}]=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}\} .
$$

Prove that $\mathbb{Z}[\sqrt{-5}]$ is not a unique factorization domain (UFD).
4. (10 points) Let R be a principal ideal domain (PID). Let S be a multiplicative subset of R such that $0 \notin S$. Prove that the localization $S^{-1} R$ is also a PID.
5. (10 points) Let $P_{1}=x^{7}+x^{4}+x^{3}+x^{2}+x+1$ and $P_{2}=x^{5}+x^{4}+x^{3}+x^{2}+x+1$. Determine the greatest common divisor of the polynomials P_{1} and P_{2} in the polynomial ring $\mathbb{Q}[x]$.
6. (10 points) Let \mathbb{Z} be the ring of integers and let \mathbb{Q} be the field of rational numbers. Is \mathbb{Q} is projective \mathbb{Z}-module? Please justify your conclusion.

